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Abstract

The phenomena associated with thermal snap-through and snap-buckling of symmetrically layered shallow shells of

polygonal planform are studied by means of a two-degree-of-freedom model derived from a Ritz–Galerkin approxi-

mation. The composite structure is homogenized considering perfect bond and the kinematic assumptions of the first

order shear deformation theory. The simply supported shell edges are assumed to be prevented from in-plane motions.

The geometrically non-linear, quasi-static equilibrium conditions are derived according to the von K�arm�an–Tsien
theory and simplified by the Berger-approximation. A unifying non-dimensional formulation of the elastic stability

analysis is presented that turns out to be independent of the special polygonal planform of the simply supported shallow

shell.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Temperature variations in thin-walled members of engineering structures often represent the predomi-

nant cause of failure resulting from a loss of stability, e.g., thermal buckling. Extensive studies of thermo-

elastic stability problems have been performed in the area of aeronautics and astronautics for slender

wings heated in high-speed flight and for shells of revolution of rockets (see, e.g., Hoff, 1958). In the

textbooks of Boley and Weiner (1960) and Noda et al. (2000), single chapters are devoted to thermally
induced instability of thin-walled structures. The review article of Thornton (1993) compiles various

phenomena of thermal buckling and post-buckling of both homogeneous and composite plates and shells.

The effect of non-uniform temperature variations in geometrically non-linear plates was first considered by

van der Neut (1958). Mahayni (1966) generalizes the K�arm�an–Tsien large-deflection equations for cylin-

drical shallow shells to include thermal effects and presents the solution for a mean temperature varying

parabolically in the axial direction. Irschik (1986) discusses the large deflections and stability of polygonal
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thin homogeneous panels under thermal pre-stress using the approximation of Berger (1955). Compre-

hensive surveys on the thermoelastic stability of beams, plates, and shells are given by Ziegler and Ram-

merstorfer (1989) and by Tauchert (1991).

The present paper deals with the instability processes of elastic snap-through and snap-buckling of
symmetrically layered shallow shells of arbitrary polygonal planform. The straight shell edges are assumed

to be prevented from in-plane motions and are simply supported. The composite structure is approximately

modeled by means of a first order homogenization procedure, thus rendering the boundary value problem

of an effective homogeneous structure. The analysis starts with the derivation of the non-linear equilibrium

conditions according to the theory of von K�arm�an and Tsien (1941), modified by the kinematic hypothesis

of Mindlin (1951). The influence of a prescribed temperature field at sufficiently low rate is characterized by

the effective mean thermal strain and the thermal curvature, respectively. The geometrical approximation of

Berger (1955), that replaces the in-plane forces by a hydrostatic in-plane stress state, is adopted. Applying a
multi-modal approach and the Galerkin procedure to the boundary value problem, result in a coupled

cubic system of equations for the generalized coordinates. Within the two-degree-of-freedom model, elastic

snap-through and snap-buckling and the narrow post-buckling ranges of stable equilibria are studied.

Using a proper non-dimensional formulation, the results turn out to be independent of the special

polygonal planform of the shallow shell. Structures having the same similarity numbers exhibit an identical

(non-dimensional) response. Any special, possibly non-regular, polygonal planform of the shell enters only

via the eigenvalues and mode shapes of the reduced linear boundary value problem of associated simple

membranes.
2. Multi-modal approach for non-linear thermoelastic deflection of shallow shells

Geometrical non-linearity is considered by means of the kinematic assumptions for the midsurface

strains of the shallow shell according to von K�arm�an and Tsien (1941). Taking into account the effect of

shear, the distribution of strain through the thickness of the shell is approximated by the Reissner–Mindlin

first order shear deformation theory (see Reissner, 1985; Mindlin, 1951). Symmetrically laminated plates
and shells composed of transversely isotropic layers are approximately modeled by means of a first order

homogenization procedure, thus rendering the boundary value problem of an effective homogeneous

structure.

The strain energy of the thermally stressed and sufficiently shallow homogenized shell can be decom-

posed into the membrane energy,
Um ¼ 1

2
D
Z
A
½I2e � 2ð1� mÞIIe�dA; ð1Þ
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Ie ¼ exx þ eyy ; IIe ¼ exxeyy �
1

4
e2xy ; ð5Þ
represent the first and the second invariant of the midsurface strain tensor, respectively, where eij, i; j ¼ x; y,
stand for the components of the midsurface strains. According to Nash and Modeer (1960), who have

generalized the assumption of Berger (1955) in pre-stressed plate theory, by including the curvature of

shallow shells, the second invariant IIe is neglected in Eq. (1), thus the membrane energy is approximately

given by the midsurface integral
Um ffi 1

2
D
Z
A
I2e dA: ð6Þ
This is a reasonable well-behaving approximation for structures with immovable boundary conditions. In

Eqs. (1)–(4), w denotes the deflection and wx, wy are the cross-sectional rotations. A denotes the shell area

projected onto the ðx; yÞ-plane, D, K, 1=s represent the effective in-plane-, bending-, and shear-stiffness,

respectively, resulting from the homogenization procedure of symmetrically laminated shells composed of

transversely isotropic layers, z ¼ 0 refers to the midsurface of the shell,
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XN
k¼1

Z zk
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ð7Þ
m is an effective Poisson�s ratio, j2 stands for a shear factor, and Ek and Gck denote the modulus of elasticity
and the transverse shear modulus in the kth layer, respectively.

The influence of thermal heating at sufficiently low rate is characterized by the effective mean thermal

strain nh and the thermal curvature jh, respectively,
nh ¼
1

Dð1þ mÞ
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Ekakh
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akhzdz; ð8Þ
where hðx; y; zÞ denotes the prescribed temperature field, and ak is the linear coefficient of thermal expansion

in the kth layer.
The first variation of the strain energy must vanish,
dðUm þ Ub þ Us þ UthÞ ¼ 0; ð9Þ
and thus yields the equilibrium conditions,
D½Ie � ð1þ mÞnh�;i ¼ 0; i ¼ x; y; ð10Þ
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where
H ¼ ðkx þ kyÞ=2 ð14Þ
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is the mean curvature of the middle surface. After eliminating the cross-sectional rotations, a single fourth-

order differential equation for the shell midsurface deflection wðx; yÞ is obtained:

Dfwg ¼ �ð1þ mÞKDjh; ð15Þ
where the operator
Dfwg ¼ Kð1þ snÞDDw� n½Dw� 2ðH � KsDHÞ� ð16Þ
characterizes the pre-stressed shallow shell, and n denotes an isotropic in-plane force, that is constant

throughout the midsurface. The latter, in the Berger-approximation, is related to the deflection by the

averaging integral (see, e.g., Heuer, 1994),
n ¼ D½Ie � ð1þ mÞnh� ¼ const: ¼ �D
1

2A

Z
A
wðDw

�
� 4HÞdAþ �nh

�
; ð17Þ
where the influence of heating is taken care of by the averaged thermal strain
�nh ¼
ð1þ mÞ

A

Z
A
nh dA: ð18Þ
Shear-deformable plates and shells with straight edges and boundary conditions of the hard hinged type

are considered subsequently, thus the boundary conditions are
C : w ¼ 0; mn ¼ 0; ws ¼ 0; ð19Þ
which in the case of straight edges become the classical form of thermoelasticity of simply supported plates,
C : w ¼ 0; Dw ¼ �ð1þ mÞjh: ð20Þ
In a multi-modal approach the deflection and the thermal curvature of the shallow shell are expanded

into the orthogonal set of eigenfunctions w�
j ðxÞ,
wðxÞ ¼
XN
j¼1

cjw�
j ðxÞ; jhðxÞ ¼

XN
j¼1

chjw�
j ðxÞ; chj ¼

Z
A
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j ðxÞdA
�Z

A
w�2

j ðxÞdA; ð21Þ
where w�
j are the solutions of the homogeneous linearized problem of a flat plate that is equally shaped as

the shell�s base plane. The corresponding boundary value problem is given by the reduced Eqs. (15) and

(20), i.e.,
A : Kð1� sD�nPjhÞDDw�
j þ D�nPjhDw

�
j ¼ 0; ð22Þ

C : w ¼ 0; Dw ¼ 0 ð23Þ
with the mean thermal strain of the flat plate critical in the jth mode, �nPjh. In Eq. (21), the amplitude

coefficients cj, chj carry the appropriate dimensions, and the superscript (�) stands for non-dimensional

quantities. Irschik (1985) has shown that the eigenfunctions of those shear-deformable simply supported

plates with polygonal planform are governed by a set of second-order Helmholtz-differential equations with

homogeneous Dirichlet-boundary conditions,
Dw�
j þ ajw�

j ¼ 0; j ¼ 1; 2; . . . ;N ; ð24Þ

C : w�
j ¼ 0; ð25Þ
aj is the jth eigenvalue of an effectively pre-stressed membrane of the same shape as the plate and it is

related to the jth critical mean thermal strain through
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�nPjh ¼ Kaj=Dð1þ KsajÞ: ð26Þ
Using Eq. (21) as a Ritz-approximation for the solution of Eq. (15) and applying Galerkin�s procedure
(see, e.g., Ziegler, 1998, p. 593 ff.),
Z

A
½Dfwg þ ð1þ mÞKDjh�ckw�

k dA ¼ 0 ð27Þ
yield a coupled system of algebraic cubic equations for the unknowns cj:
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with the coefficients
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L0 stands for a characteristic length of the shell structure, djk is the Kronecker delta, and the non-dimen-

sional quantities
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characterize the norm of w�
j and the influence of the mean curvature H , respectively.

Subsequently it is assumed that the initial curvature of the shallow shell is proportional to the basic
eigenmode of the linearized plate problem w�

1. Consequently, Eq. (14) becomes
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and, with j ¼ 1 in Eq. (30),
b�
1 ¼

1

A

Z
A
w�2

1 dA; #�
1 ¼

1

2
C0L0a1b

�
1; d�1 ¼ � 1

2
C0L3

0a
2
1b

�
1; #�

j ¼ d�j ¼ 0; . . . ; jP 2: ð32Þ
This special case allows the evaluation of the first and fourth summation in Eq. (28) which, in its non-

dimensional form, simplifies to
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The non-dimensional similarity numbers are, for b�
j see Eq. (30),
a�j ¼
aj
a1

; s� ¼ Ksa1; D� ¼ DL2
0

K
; C�

0 ¼
C0

L0

: ð35Þ
Structures having the same similarity numbers exhibit an identical non-dimensional response. Any special,

possibly non-regular, polygonal planform of the shell enters only via the parameters a�j and b�
j of the

reduced linear boundary value problem defined by Eqs. (24) and (25).

For the case of a flat plate, i.e., when H ¼ C0 ¼ 0, the left side of Eq. (33) reduces to the first two terms

(indicated in brackets) and consequently the right side to the first term only,
a�j c
�
j þ c�j

XN
k¼1

e�jkc
�2
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j c
�
hj; j ¼ 1; 2; . . . ;N : ð36Þ
3. Thermal stability

It is well-known from the stability analysis of shallow arches (see, e.g., Ashwell, 1962) that at least a two-

mode approximation must be considered to find the critical loads of lower order, and thus to account for

the expected processes of snap-through and snap-buckling.

Consequently Eq. (33) in such a two-mode approximation gives the pair of coupled cubic equations
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Reduction of the system of Eqs. (37) and (38) is achieved by dividing Eq. (38) by the generalized coordinate
c�2 and subsequently by transforming the variables
�c�1 ¼ c�1 þ
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Substitution yields,
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Subsequently the two cases of instability inherent in Eqs. (41) and (42) are studied separately together with

their post-buckling ranges.
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3.1. Single-mode approximation: thermal snap-through

Snap-through behavior of shallow shells is considered using the classical single-mode approximation,

i.e., the post-critical deformation is assumed to be affine to the first mode. Consequently, Eq. (41) remains
as the characteristic equation of equilibrium by putting �c�2 ¼ 0,
�c�31 þ �a�1�c
�
1 � �f �

1 ¼ 0: ð44Þ

Eq. (44) reflects a flat plate single-mode approximation, i.e., j ¼ 1, however, the effective coefficients �a�1,

�f �
1 given in Eq. (43), and the transformed generalized coordinate �c�1 expressed by Eq. (39) are to be noted.

Stability requires a positive second derivative of the potential energy and thus, the stability limit is derived

from the first derivative of Eq. (44), the equilibrium condition,
3�c�21 þ �a�1 ¼ 0: ð45Þ

Real solutions require �a�1 6 0 in Eq. (45), see again the first coefficient in Eq. (43). The critical position where

snap-through may be initiated is determined by solving the pair of Eqs. (44) and (45), rendering a critical

value of the generalized coordinate in Eq. (39),
�c�1 ¼ ð�c�1Þc1 ¼
3

2

ð�f �
1 Þc1
�a�1

; ð�c�1Þc1 < 0: ð46Þ
Fig. 1 shows the equilibrium chart in the ð�f �
1 ;�c

�
1Þ-plane for various parameters �a�1, illustrating the solutions

of Eq. (44), and indicating that snap-through can occur only for �a�1 6 0. Substituting the critical value of

Eq. (46) into the limiting condition of stability, Eq. (45), yields what is called a cusp catastrophe in the

parameter plane (see, e.g., Troger and Steindl, 1991),
4

27
�a�31 þ ð�f �2

1 Þc1 ¼ 0 ) ð�f �2
1 Þc1 ¼

4

27
j�a�1j

3
: ð47Þ
In the post-buckling range, the inequality holds which can be expressed by
�f �2
1 >

4

27
j�a�1j

3
: ð48Þ
Putting the shell curvature to zero, i.e., C�
0 ¼ 0, in Eq. (43), yields in the limiting process the well-known

flat plate parameters of the homogenized structure as,
lim
C�
0
!0

�a�1 ¼
a�P1
e�11

� 1
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� �nh
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Fig. 1. Snap-through: equilibrium chart in the ð�f �
1 ;�c

�
1Þ-plane for various parameters �a�1 according to Eq. (44).



2118 R. Heuer, F. Ziegler / International Journal of Solids and Structures 41 (2004) 2111–2120
The coefficient e�11, also given in Eq. (43), remains unchanged and is to be substituted together with

Eq. (49) in Eqs. (44)–(48).

3.2. Two-mode approximation: thermal snap-buckling

As was pointed out by Ashwell (1962) (see also Irschik, 1986; Ziegler and Rammerstorfer, 1989) the loss

of stability of the static equilibrium position may be accompanied by a bifurcation to a higher mode. For

non-linear random vibrations of buckled plates, this so-called snap-buckling has been studied by Heuer

et al. (1993). Consequently, the full system of the coupled cubic equations (41) and (42) must be considered.

Its solution which could be made explicit in the transformed domain, defines the range of snap-buckling,
�c�1 ¼
�f �
1

ð�a�1 � �a�2Þ
; �c�22 ¼ �ð�c�21 þ �a�2Þ � �

�f �2
1

ð�a�1 � �a�2Þ
2

 
þ �a�2

!
: ð50Þ
The first equation of (50) shows proportionality between �c�1 and �f �
1 , the second one defines an ellipse that

corresponds to real solutions in the case of �c�22 > 0. The critical position where snap-buckling may be
initiated is determined from the condition
�c�22 ¼ 0 ) �c�21 þ �a�2 ¼ 0; ð51Þ
which, when substituted into the first of Eq. (50), yields the corresponding critical load of bifurcation
ð�f �2
1 Þc2 ¼ j�a�2jð�a�1 � �a�2Þ

2
: ð52Þ
Fig. 2 illustrates the ð�f �
1 ;�c

�
i Þ-paths, i ¼ 1; 2, according to Eq. (50), exhibiting the typical bifurcation

behavior of snap-buckling.

However, this type of two-mode bifurcation occurs only if ð�f �
1 Þc2 < ð�f �2

1 Þc1, that condition corresponds to
the range of the parameters �a�1 and �a�2, derived by considering Eqs. (47) and (52),
3

4
j�a�2j6 j�a�1j6 3j�a�2j: ð53Þ
Finally, when considering both critical states, one of snap-through and of snap-buckling, the range of
equilibrium is formally defined by
�f �2
1 6 j�a�2jð�a�1 � �a�2Þ

2
6

4

27
j�a�1j

3
: ð54Þ
Fig. 3 shows the equilibrium chart in the ð�a�1; �f �
1 Þ-plane according to Eq. (54) for a chosen parameter of

�a�2 ¼ �2 where the shaded domain indicates the stable range of limited validity due to the two-mode

approximation.
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The parameters of the flat plate problem are found again by putting the shell curvature to zero, i.e.,

C�
0 ¼ 0, rendering
lim
C�
0
!0

�a�2 ¼
a�P2
e�21

� 1

e�21
1

 
� �nh
�nP2h

!
; ð55Þ
where e�21 given in Eq. (43) remains unchanged, and �a�1, �f
�
1 are determined from Eq. (49).
4. Conclusions

Symmetrically layered shallow shells are homogenized and the resulting first order elastic stability limits

of the resulting structure are derived. A two-degree-of-freedom model derived from a Ritz–Galerkin

approximation serves sufficiently well to analyze snap-through and snap-buckling and the narrow post-

buckling range of stable equilibria. Similarity law and a non-dimensional analysis make the results, cast

into the parameter space, readily available with especially simple solutions for simply supported
(immovable) straight edges of a polygonal planform. Numerically the eigenvalues and mode shapes of

associated simple membranes must be determined, e.g., by applying the boundary element method.

Results for thermally loaded plates are included by putting the initial curvature of the shell to zero.
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